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INFORMATIVE GEOMETRY OF PROBABILITY SPACES

Jacob Burbea

\ ABSTRACT

L——

" The paper is concerned with the geometrical properties that are
induced by the local information contents and structures of the para-
meter space of probability distributions. Of particular interest in
this investigation is the Rao distance which is the geodesic distance
induced by the differential metric associated with the Fisher informa-
tion matrix of the parameter space. Moreover, following Efron, Dawid and
Amari, some affine connections are introduced into the informative
geometry of parameter space and thereby elucidating the role of the

curvature in statistical studies., In addition, closed form expressions
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of the Rao distances for certain families of probability distributiomns
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are given and discussed.
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Informative Geometry

of Probability Spaces

by Jacob Burbea

Metrics and distances (or semi-distances) between pro-
bability distributions play an important role in problems
of statistical inference and in pratical applicatiomns to
study affinities among a given set of populations. A stat-
istical model is specified by a family of probability dis-
tributions, usually described by a set of continuous para-
meters known as parameter space. The latter possesses some
geometrical properties which are induced by the local infor-
mation contents and structures of the distributions. Start-
ing from Fisher's pioneering work [17] in 1925, the study

of these geometrical properties has received much attention

in the statistical literature. In 1945, Rao [24] introduced

a Riemannian metric in terms of the Fisher information

matrix over the parameter space of a paremetric family of

e

probability distributions, and proposed the geodesic dis-

“ a0
.

tance induced by the metric as a measure of dissimilarity

between two probability distributions. Since then, many

o« 2 et .,
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statisticians have attempted to construct a geometrical r

"4
theory in probability spaces and it was only after thirty }{:j
years later that Efron [13] was able to introduce a new f:{:%

affine connection into the geometry of parameter spaces and

thereby elucidating the important role of the gcurvature




in statistical studies, Significant contributions to
ii§ Efron's work were made by Reeds [28] and Dawid [11]. The
i%. latter has even suggested a geometvical foundation for

Efron's approach as well as pointing out the possibility of

introducing other affine connections into the geometry of
parameter spaces (see also Amari [1,2]). This recent study
has also revived the interest in dissimila:ity measures like

the Rao distance [25], especially in the closed form expres-

sions of these distances for certain families of probability j}i

distributions. Some work in these directions was done %‘;

» earlier by Cendov {9, 10]. Recently, Atkinson and Mitchell :j:

%S? [3], independently of Cendov [9,10], computed the Rao dis- }EE
-:i tances for a number of parametric families of probability ‘éﬂ
distributions. A unified approach to the construction of :—:1

distance and dissimilarity measures in probability spaces .tg

is given in recent papers by Burbea and Rao [7,8], and Oller ;

and Cuadras [22] (see also [6]). -~:

-]

1. Generalities. g

=3

We first introduce some notation. Let u be a o-finite i

N

additive measure, defined on a o-algebra of the subsets of a 'E%

measurable space x. Then, M=M(yx:u) stands for the space of _iti

all p-measurable functions on x, LzL(x:u) designates the ‘

space of all peM so that
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l‘Plluzfxlp(x)ldu(x)=fx|p|du<w. oo

By M+EM+(x:u) we denote the set of all peM such that

p(x)eR+E(0,w) for p-almost all xeX, and we define L+EL+(x:u) f‘é

—rrr
N

t: as L+=M+f| L. We let P=P(y:n) stand for the set of all N,

peL+ with ||p||u=l. Evidently, P is a convex subset of L+,

CICLNA AR S

and peL+ if and only if p/||p||ueP.

é; In the probability context, a random variable X takes "ii
;? values in the sample space X according to a probability dis- - ;
Ef tribution p assumed to belong to P. If X is a continuous ;f%:j
X random variable, u will be the Lebesgue measure on the Borel :,;;%

sets of a euclidean sample space X and, if X is discrete, u
is taken as a counting measure on the sets of a countable

sample space Y. :é:nﬁ

~e
Let 6=(01,...,6n) be a set of real continuous parameters e

PR
R

P

L par sxa ¢
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L x . .

belonging to a parameter space O, a manifold embedded in ]"

and let F®={p(-|6)eL+:6e0} be a parametric family of posi- :f“fi
tive distributions p=p(-|6), 6e@, with some regularity pro-

perties not mentioned explicitly to avoid lengthy discussion

o 5 e
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(see, however [3,7,12]). For example, it is implicitly as- ':’:3

sumed that

3,23, p( |e)y=ap(. |e)/aei (p=p(+ |e)eFo , i=l,...,n) .::::::E::
.‘_.__;

is in M for every 6e€0. It is also assumed that for a fixed :ﬁf?
0e0, the n functions {aip}2=l are linearly independent over lgﬁkq
o

I

...........




X. We also consider a parametric family of probability
distributions P0={p(‘i6)eP:BEG} which may be viewed as a
convex subfamily of FO'

Let f be a cortinuous and positive function on R+ and

define

SHOE N E%Fl[dp]zdu (0co , p=p(+|0)cF,),

where in the integrand, the dependence on xex and 6€0 is
supressed and where
n

dp=dp(-|6)= } (3,p)de,.
i=1

Here and throughout the remaining parts of this entry we

shall use freely the convention of supressing the dependence

on XeX and 0e@, Thus, with this convention, i
-
20y T (E) 3
(1.1) dsg(8)= ) g;; d6.d6.
1,3=1 :
with 4
( ~ -
£)__(£f) £(p) .
S = 8)= ) 9.p)du. .
85 =81 (©) Ix —-Lp (3,p)( jP)au
It follows that the nxn matrix [g§§)(e)] is positive~de- ;fﬂj

finite for every 6e0® and hence ds% gives a Riemannian metric
on O, Alternative expressions for these quantities are
available through the language of expectations. Thus, for

p= p(.|6) € FG’

ds2(8)=E, [(£op) (dlogp)”]




...................

and
g(f)(9)=E [(fop) (3,logp) (3. logp)].
1j 0 i h

In the theory of information (see [6]) the quantity-
?i logp(-]8), for p(-le)ePO, is known there as the amount of
?: "self-information" associated with the state 6e0. The self-
E{ information for the nearby state 6+§6c0 is then
fg -logp(-|6+68). To the first order, the difference between
5? the self-informations associated with these states is given
& by
::-: n
- dlogp= ) (3,logp)d,
" i=1
o )
i;i and hence dsf(e) measures the weighted average of the square
Ej of this first order difference with the weight f[p(-|6)].
¢i For this reason, the metric ds% and the matrix [g§§)] are
=, 4
E;. called the "f-information metric" and the "f-information
}{ matrix'", respectively.
AN
3} As is well-known from differential geometry, giﬁ)

(i,j=1,...,n) is a convariant symmetric tensor of the second
order for all 60, and hence ds% is invariant under the

admissible transformations of the paremeters. Let 6=60(t),

1) 42

tlfpfpz, be a curve in O joining the points 6 €0

i) 2)1/2
3

with 6°0°=6(t,)(§=1,2). Since ds =(ds is the line R

2 .
element of the metric dsf, the distance between these points

e m e =t afmy w
R -
aam .
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along this curve is

(f) 1/2
2 g ael-11% PO

where a dot denotes differentiation with respect to the

curve-parameter t. The geodesic curve, namely the curve

(1) (2)

joining 6 and 0 such that the above distance is the

shortest is called the "{-information geodesic curve' along

NEO RN (D) 4@y 4
(1)

and 6 while the resulting distance S (e

called the "f-information geodesic distance' between 6

(2)

and 6'°’. The f-information geodesic curve 6=6(t) may be

determined from the Euler-Lagrange equations

() , § ()
(1.2) 6.+ r:76.8,=0 (k=k,...,n)
121 ik i i,§ =1 ij k i’j

and from the boundary conditions

0. (c )= e(J) (i=1,...,n 3 j=1,2).

Here, the quantity P$€) is given by
ijk
(f) (£) (f) (£)
(1.3) le 2[81g +3, 18ki ~ gij ]

and is known as the "Christoffel symbol of the first kind"

for the metric ds%.
By the very definition of the f-information geodesic
curve 8=0(t), its tangent vector 6=6(t) is of constant

length with respect to the metric ds%. Thus,
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(1.4) N )
i,3=1

()«

gij eiejsconst.

The constant may be chosen to be of value 1 when the curve-
parameter t is chosen to be the arc-length parameter s,
Ofgfgo with sossf(e(l),e(z)), e(0)=e(1) and e(so)=6(2). It
is also clear that the f-information geodesic distance Sf
on the parameter space O is invariant under the admissible
transformations of the parameters as well as of the random
variables.

The metric ds%(e) may also be regarded as a functional
of p(-|6)eF0. This functional is convex in p('le)eFO if
and only if the function F(x)zx/f(x) is concave on R,. In
particular, if f is also a Cz—function on R+ then this
holds if and only if FF"z_Z(F')2 on R+. The choice of f(x)=

a-1 . .
X gives the "a-order information metric"

(1.5) 25 (6)=E, [p" " (dlogp)”]

with the corresponding "a-order information matrix"

(1.6) giz)(9)=Ee[pa—l(ailogp)(3jlogp)]

and the "a-order information geodesic distance" Sa on 0. It

follows that dsz(e) is convex in p('le)eF0 if and only if
l<a<2. We drop the suffix o when a=1l. Then, ds? is known

as the "information metric' or the "Fisher amount of infor-

mation" while [gij] is the well-known "information matrix"




or the "Fisher information matrix". The distance S on 0O is N

called the "information geodesic distance" or the "Rao dis- -

tance" (see [3,7,26]). We also note that

() a-1 a
) (0)= 3,9.pdu-J_p*3,9,logpdu.
g; (=) p" 73,3 pdu-J p9;3.logpdu

Moreover, for af0,
(o) -2 o, -1 a S

.7 (8)=a 73,9, dy-o 9.9.logpdu.
By5 ()= 2,35f pdua™] 70,9 10gpdn .~~i

In particular, . :}
SR

(6)=3_3, [ pdp-J_pd,3,logpd o]

8;(0)=3;9. [ pdu-/ 3,3, logpdn T
r-—u

and thus ’_::~.:
-

(1.7) gij(e)=-jxpaiaj1ogpdu=-Ee(aiajlogp) (p(-|0)ePy). o
2 RS

The metric dsf(e) arises as the second order differen- ‘:‘_
tial of certain entropy or divergence functionals along the
3

direction of the tangent space of O at 6e0. See [7,12] for £
more details (see also [6]). ..
For example, let F(:,:) be a Cz-—function on R, X 1R+ and
consider the "F-divergence" ]
Dp(p,@)E[ Flp(x),q()]dntx)  (pyqehly). 2

We shall also assume that F satisfies the following addi- i‘
tional properties: (i) F(x,¢) is strictly convex on iR+ for J
ol

S

every XeR ; (11) F(x,x)=0 for every xeR ; o




) L@
(iii) 8yF(x,y)|y=x—const. for every xeR . For p(+|6+"")

and p('|6(2)) in PO we write
Then, for p(-le)eFO and 6€0,
D,(6,8)=0 , dDF(9,6)=fx3yF(p,y)|y=p(dp)du=0

and

2 .2

d DF(e,e)-dsf(e)
where

f(x)=x3}2’F(x,y)|y=x (xeR+).

It follows that to the second order infinitesimal displace-

ments
1,2
D(8,0+80)= 5ds(8).

2. Properties of the Information Metric.

We shall describe some further properties of the f-in-
formation metric ds%. However, for reasons of clarity and
economy we shall restrict ourselves here to the case of the
ordinary information metric d52 (i.e. when f£(x)Z1 or when
o=1 in (1.5)) on the parametric space O of probability dis-
tributions p(-|8) in PO’ A more general discussion may be

found in [7,8]. We shall hereafter also assume that the sum-

............

3
...........
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mation is taken withouf the symbol I when the indices are
repeated twice and that the extent of the summation is un--
derstood as running from 1 to n. Thus, with this conven-

tion, we have, by virtue of (1.1), (1.3), (1.6) and (2.7),
ds®=g, .6 a8
ij i3
gij=Ee[(3ilogp)(ajlogp)]=—Ee[5i3jlogp]
and
(2.1) Fijk= E{aigjk+ajgki~akgij]'

The information geodesic curves 6=6(s), where s is ‘the

arc-length parameter, are determined, in view of (1.2), by
(2.2) gijei+rijkeiej=o (k=1,...,n).

Moreover, from (1.4) we also have

(2.3) gijeiek=1.

Thus, for two points a,be®, or for p(-|a), p(-|b)eP®, the

Rao distance S(a,b) is completely determined by (2.2), a

system of n second order (non-linear) differenital equations,

and by the 2n boundary conditions 0(0)=a and e(so)=b with
so=S(a,b). This computation may be facilitated with the
aid of the normalization (2.3).

We denote by I the Fisher information matrix [gij]’ by

ate s
-----------------------
...........................................

------

o
B

.

-

'''''''''''
PN -
------
.........




11 %
1§ S -1 T
g ’ the elements of its inverse I ~, and, as usual, the ]

Je———
elements of the unit matrix I are denoted by the delta of ]
Kronecker § Th Note that I—l=[gij] is also positive-de- .

finite and that I is associated with a distributiocn

p(: |e)sP0 of a random variable X. We list the following

properties (see Rao [27, p. 323-332] for more details):

LR S y v

B 3 B
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Let Il and 12 be the information matrices due to two

independent random variables X; and X,. Then I=11+12 ;

is the information matrix due to ¥=(X Xz) jointly.
b4

29 et IT be the information matrix due to a function T of

ﬁ X. Then I- ITis semi positive-definite. :-_:
L 39 Let p(- |e)sPO with the corresponding information matrix -
- I. Assume that _f_=(fl,... ,fm) is a vector of m statis- ': '-",-:::
tics (random variables) and define g(6)= :“—i
(gl(e),...,gm(e)) by gi(6)=Ee(fi) (i=1,...,m), i.e. £
is an unbiased estimator of g(6). Consider the mxm and .:. j
i.v— mxn matrices V=[Vij] and U=[Vij] given by vij= ) j

Bol(£,-8,) (F5-g)] (i,3=1,...,m) and U =E,[£,0,logp]

e rTwTY
ri ek Rt}
.

.:::f (i=1,...,m; j=1,...,n). Then: :::-_':‘
;.” (1) The mxm matrix V—UI—lU' is semi positive-definite for ". _
:1 every 0e0. The matrix is zero at some 6ec® if and only
éﬂ if £=(f1,...,£,) is of the form £,=),9, logp+E(£,) ;;;é;
:9. (i=1,...,m); ‘i _ﬂ
b (ii) Suppose, in addition, that ajfxfi(x)p(x|e)du(x)=
: fxfi(x)ajp(xle)du(x) (i=1,...,m; j=1,...,n). Then U
3 i
b




is the Jacobian-matrix [3jgi] of gé(gl,...,gm) with

respect to 8=(91,...,6n). In particular, when m=n and

g(6)=6, i.e. f is an unbiased estimator of 6, then 1

V—T-l is semi positive-definite.

The last property constitutes the celebrated “Cramer-

Rao lower bound theorem", namely that for any unbiased esti-

mator of 6, its covariance matrix dominates the inverse of

the Fisher information matrix.

3. Information Connections and Curvatures.

The information metric renders the parameter space 0 as

a Riemannian manifold with the metric tensor gij associated

with the distribution p(-le)ePe. In this context, the

Christoffel symbol of the first kind T in (2.1) is called

ijk

the "first information connection'. As is well known from

differential geometry, this natural affine connection in-

duces a parallelism on O, known as the "Levi-Civita paral-

lelism", which is compatible with the metric tensor gij’ in
the sense that the covariant differentiation of the latter ;:?ﬂ
vanishes for this connection. Using the summation conven- ‘.i
tion, one introduces the "Christoffel symbol of the second

kind" Ty i
kind rij by -

mk |

k

This is also called the "second information connection'. "
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With the aid of this connection, the equation for the infor- ,:‘:'

mation geodesic curves (2.2) assumes the alternative form

ww ko2 s
(3.2) ak+rijéiej=0 (k=1,...,n).

In differential geometry one also considers the

"Riemann-Christoffel tensor of the second kind"

N S N Y A Y -

(3.3) Lo P e el el Sl

and the "Riemann-Christoffel tensor of the first kind" i}i:;
i

_om
(3.4) R ko™ RykeBmi

These quantities are also known as the "second information

curvature tensor" and the "first information curvature ten-

sor’, respectively. 1In this r2spect, it is worthwhile
b
noticing that )
Rigie™ Ryke™ Rij " Rreis? I

Ry ke RingiRigji™0
and that the number of distinct nonvanishing components of
the tensor Rijkz is n2(n2—l)/12. The latter reduces to O

when n=1l and to 1 when n=2,

The "mean Gaussian curvature", in the directions of x=

(xl,...,xn) and y=(yl,...,yn) of R" is given by




R,. X s
121737 e (0€0) , o

(3.5) «x=x(8:x,y)= -
% (8118507819851 %1Y %72

and is also called the "information-curvature" in the direc-

{5 tions of x and y. This curvature is identically zero if ©
is euclidean and is constant if the space O is isotropic

(i.e. when ¢ is independent of the directions x and y), pro-

vided n>2.
s Besides the first information connection Pijk there are, !
. of course, other connections leading to parallelisms which .;5
gi differ from the Levi-Civita parallelism. However, in the iii
. context of statistical inference, the choice of such connec- ;Q;
tions should reflect the structure of the distributions in i;i
some meaningful manner. Following an idea of Dawid [11], ;Eg
Amari [1] considers the one parameter family of affine con- il:

[+3 -
nections rijk given by 4

@ a
PsicTige 2T5x  (0eR)
where Tijk is the symmetric tensor

TijkEEe[(ailogp)(leogp)(aklogp)].

it o -
The connection Fijk is called the "a-connection". Thus, in ~
- this context, the first information connection is the O-con- .

Coe
l‘ l‘ l’

nection., An alternative exoression for the a-connection is

@ _ 1-a o
r‘ijk—Ee[(aiajlogp) (3, logp) I+ =5 Tijk' e
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The l-connection was introduced first by Efron [13] and

hence is also called the "Efron-connection'. The -l-connec-

tion, on the other hand, is called the ''Dawid-connection,

after Dawid [11] who was first to suggest Zts introduction.
In order to elucidate the relevance and the meaningful-

ness of the a-connections in statistical problems, we con-

sider two examples suggested by Dawid [11] and described in

Amari [1].

Example 1. We consider an exponential family PO of distri-

butions p(~|6) given (using the summation convention) by

(3.6) p(x|6)=exp{T(x)+Ti(x)ei-lp(e)} (xex)
with
(3.7) RO Ji®0 T (eco,

X

and specified by the natural free parameters 6=
(61,...,6n)e0. Here ¢ is a Cz-funtion on O, and T and
Tl,...,Tn are measurable functions on ¥. Under these cir-

cumstances, we have

ailogp=Ti(x)—aiw(6) s 8iajlogp=-613jw.

Therefore

(3.8) gij=3iajw,

(3.9) Ee[(aiajlogp)(aklogp)]=0
T R AN
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and

¢ . 1l
(3.10) Fi5k= 72 Tigk°

a

Since Fi k(6) is identicall; zero for a=1, we find that the

3
exponential family constitutes an uncurved space with re-
spect to the Efron-connection. For this reason, the Efron-

connection may also be called the "exponential-connection".

Example 2. We consdier a family POEPO(ql,...,qn+l) of dis-
tributions p(-le) given by a mixture of n+l prescribed

linearly independent probability distributions on ¥,
P(x|0)=q; (x)0;+q GOy (xex)
where

en+151—(el+-o-+en)

and 6€0 with

— = n L]
0={8=(9 en)ea+ : 0 >0},

12" n+l

In this case, we have
=1 -
9,logp=p "(q;-q ,4) > aiajlogp- <ailogp)(8jlogp).
Therefore
Ee[(aiajlogp)(aklogp)]=—Tijk

and

x
Vo P
. ) .
. .
e ey
PO DAL A SN

Yt
e

i

‘el
! [
.-.‘

‘: '.0
PR YO
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Ti5%™ 72 L4k
a
It follows, since Pijk(e) is identically zero for a=-1, that ]

this family of mixture distributions constitutes an uncurved R

space with respect to the Dawid-connection. For this rea-

son, the Dawid-connection is also called the "mixture-con-

k is adopted, the other related

a
and x are determined by the

a
Once the a-connection Pij

L. a 0.9' a
quantities rij’ Rijk’ Rijkz
same rules, (3.1) and (3.3)-(3.5), for determining the cor-

responding quantities when a=0, For example,

and, corresponding to (3.2), the equation

G415 8.0 20 (k=i,...,n)
kijij dygeesy
ives the "strai:ht-lines" 6=0(t) with respect to the a-con-
nection. When a=0 these "straighr-lines" are also the in-

formation geodesic curves. This is not necessarily so when

a*O for, in this case, the a-connection is not compatible

with the metric tensor gij' -0

The theory of a-connections and their curvatures seems

to be particularly applicable in elucidating the structures f-}ff

of the exponential families as well as of the curved expo - e

nential families of distributions. An exponential family




may be written in the form (3.6)-(3.7) by choosing natural
parameters 8=(el,...,6n) which are uniquely determined with-
in affine transformations. In this case, (Tl,...,Tn) con-
stitutes a sufficient statistic for the family and has a
covariance matrix V which equals to I. In particular, the
eorresponding Cramer-Rao lower bound, in property 3°(i) of
the previous section, is always attained. Moreover, the
natural parameter space O is convex, and, by (3.8), ¢ is
convex on @. A use of (3.5)-(3.10) shows that the a-

Riemann-Christoffel curvature tensor of the space is givenby

a

_ 1-a mr
Ryike™ ]

7 1Tk Timg Ty e Timic /8 -

Initially, this formula is valid only for the natural co- -
ordinate system. However, since the formula is given by ’-j
- means of a tensorial equation, its validity does not depend :}
on a particular choice of the coordinates. It follows that

for any exponential family P0

2
=(1-a7)R; 500

) a
o Rijka
and hence the Efron and the Dawid connections (i.e. when a=1
and a=-1) render the space 0 as '"flat" (or with an "absolute
- parallism').

The curved exponential families can be embedded in the

exponential families as subspaces (Efron [13,14]). Using

this observation, one shows that these families posses vari-

..........

------
------
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ous dualistic structures: The Barndorff-Nielsen duality [4]

associated with the Legendre transformation, the a-(-a)
duality [1] between two kinds of connections and the a-(-a) e

duality [1] between two kinds of curvatures. As shown by

Amari [1], these dualities are intimately connected and,
moreover, that the second-order information loss is express- if,ﬂ
ed in terms of the curvatures of the statistical model and
the estimator. We refer to Amari [1], Barndorff-Nielsen
[4], Dawid [11], Efron [13,14] and Reeds [28] for a more
detailed account on these statistical connections. For

the general study of connections and curvatures, we vefer
to the books of Eisenhart [15,16], Hicks [18], Laugwitz [20]

and Schouten [29].

4. Informative Geometry of Specific Families of Distribu-

tions.

An informative geometry of distributions p(-Ie)eP0 is
the geometry associated with the natural affine commection
Fijk of the information metric dsz. We shall briefly de-
scribe the informative geometrics of certain well-known

familiés of distribution Pe. This description includes the

evaluations of the curvature and the Rao distance for the

family Pe. Note, however, that, as mentioned in the pre-
vious section, the a-curvature based on the a~connection of

2 . s
Amari [1] is (1-0”) times the present information curvature,
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provided P0 is an exponential family.

4.1. Univariate Distributiomns.

Here 0 is an interval and dsz(6)=g(de)2 with

2
[ g=g(8)=g,,=-E,(3"logp)  (p(-|0)ePy).
- A
. The curvature is always zero and the connection rlll is .i
i;~‘ g'(6). The latter can be made to vanish identically by . :5;
h ",
f reparametrizing 6e0 to seO*, where Cs'(e))2=g(e). The Rao A
; distance of a,be® is given by ;“i
) o -
. s(a,b)=|[ /g(®de]. —
;f; For example, for a one-parameter exponential family f
:‘: . _.:7
m p(x|8)=exp{T(x)+t(x)$(8)-1(6)} ..n,j
=
T . 22 2 2 T
- we find that g=(¢')"¢">0 where o =Ee[(T-m) ] with m=Ee(T), G
,'_.._: R
| and, moreover T
® '
o wsp'/o' L oPeu'/e. oy
- e
;;:q A special case is the (generalized) Weibull distribution ﬂj
o ]
;;1 (4.1)  p(x|8)=T"(x)¢(8)exp{-T(x)$(8)} (x>0, 6€0) 5;?;
e i
.- oo
’ with respect to the Lebesgue measure on x=R+. Here T is a \‘Q
o~
non-negative differentiable function on x with T(0)=0, and RO

is monotonically increasing to . We also assume that o




e m T 4 B l'l
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$(8)>0 for every 6e0. In this case g={(log¢)'}2 and thus
s(a,b)=|1og($(a) /6 ())|  (a,bed).

We now list some other nondiscrete cases:

l? Gamma Distribution. Here

r -1 -x6,.Tr

p(x|0)= 0

F(r)

with respect to the Lebesgue measure on x=R+. The parameter
space 0 iis+ and r>0 is the index of the gamma distribution.

In this case
S(a,b)=V/r|log(a/b) | (a,beR ).

2° Weibull Distribution.

r
p(x|(3)=rxr_]'6e-x ®

with respect to the Lebesgue measure on x=R+. Here O=R
and r>0 is the index of the Weibull distribution. This is

a special case of (4.1), and
S(a,b)=|1og(a/b) | (a,beR+).

3% pareto Distribution.

-(6+1)

p(x|0)= or’x (x>r, eem+)

with respect to the Lebesgue measure on x=[r,»), r>0. As

before

O e IR A
at m M




S(a,b)=|1og .a/b) | (a,beR+) iﬂ»

4° Power Function Distribution.

p(x|6)=6r"exe"l (0<x<r , 95R+) ki%

with respect to the Lebesgue measure on x=(0,r], r>0. Again,
S(a,b)=|1og(a/b) | (a,beR)). N

5¢ Fixed-Mean Normal Distribution. .

2,,,2 NG

2 1 -(x- 26 S

p(x|0)=N(x|r,07)= —=75 € (x=r)"/ (x¢R) N

(27)7'70 AR

2 ]

with a fixed mean reR and variances 6 , 6605R+. Then ‘74

S(a,b)=vZ|log(a/b)| (a,beR+). ﬁi;

i

6° Fixed-Variance Normal Distribution. o

2,2

2 1 - —9 2 "“v

p(x|e)=N(x|6,r )= —___ff7f~c (x-0)"/2x (xeR) s

(2%) r

2 ;

with a fixed variance r~, r>0 and means 6¢OzR. Then ~r

: ]
-j{} S(a,b)=|a—b|/r (a,beR). {fé
o We now list some discrete cases. *‘i
70 Poisson Distribution. 235

) p(x|6)=e—eex/x! (er+, 68R+) “'%
Ry

where Z+={0,1,2,...}. Then

=
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S(a,b)=2|/a-vb| (a,beR).

8% Negative Binomial Distribution.

p(x|0)= £§%%§%ex(l—e)r (xsZ+, 0<6<1)

with index r>0 and 0=(0,1). The Rao distance is

1; 1-/ab

S(a,b)=2Vt cosh™ | ————— (a,be0).
(v (1-a) (1-b) |
Alternatively
S(a,b)=2Yr log 1-/abt|/a-/b| (a,be0).

/(T=a) (1-b)

9% Binomial Distribution.

px|0)= No*(1-0)¥*  (xel0,1,...,N} , 0<8<1)
with 0=(0,1) and N>1 is an integer. In this case
5(a,b)=2/N cos™ M {Vab+/(1-a) (1-b) )
or, equivalently,
S(a,b)=2/§|sin—lfg;sin-lfgl (a,bed).

The distance without the factor 2/N is also called the

"Hellinger-Bhattacharyya distance" (see [3,5,12]) for the

binomial distribution.

|
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4,2, Bivariate Distributions.

Here 0, for p(-IG)EPO, is of dimension n=2. In this

case, the first juformation curvature tensor R

15ke has only

1212° The latter coincides with .

one independent component R
the Gaussian curvature x. As an example, we describe the
2-dimenisonal geometry of the classical normal distribution
N(u,oz) with means y and variances 02 (ueR, oeR+). Other

examples are described in 4.3 below.

For the normal distribution

2,2 .

2 - (x-1 2 rorced
p(x|8)=N(x|n,07)= -—-—ll—/z—\ (x-1)"/20 (xeR) ,

2m ™" SEG
]
we have G)=IR><[R.+ and 6=(u,02)eo. The information metric is - \$
=N
"

ds?=26"21 () 21 (do) .
V2

- ad
4.»_ .1
I | * o
and the curvature is k-2 . Letting n =u//§ and introduc- oty
ing the complex variable z=u*+ig we find that O becomes the 12i‘
A

2 - - ,
upper-half plane {zel: Imz>0} and ds =20 2dzdz, effectively -
the Poincare metric. The geodesic curves are the ''semi- o
circles" o
]
z=atre’? , >0 , O<¢p<m, R
- .:,.i
where a is a real constant. This family includes the half- "“é
o
lines Rez=const., z€0Q, as limiting cases, corresponding to T
-t
2 2 e
r+», The Rao distance S(1,2) between (ul,ol) and (uz,cz) of e
I'::-:j
. =
~ (SR I . ~ T N Tt [ g " - * . “:-:.:'
aan . N, e AR et . Calalalto ¢ e e AN LN L e AL I
‘h.\ -. > ‘- '-‘ ‘-' .- \-. N \J A y . 2, [y 9 A Y "A ‘IL'.A_-A_.-L"-Q.‘ -"-(‘ h A ‘A. he A- * " LY " .2‘ *, ‘AA_!-A.'.A“




=

25

0, equivalently between N(ul,ci) and N(uz,og), is

1+6(1,2) 1

S(1,2)=V2 log T5(1.2)

where

. 2 21/2
(v, -p,) +2(c,~0,)

2 2,
(uy-uy) 42(0,40,)" ;
Ncte that always 0<6(1,2)<l. An al{2rnative expression for

the distance is

$(1,2)=2/7 tanh™15(1,2).

We note that when Hy=Hys the geodesic curve connecting
(ul,ci) and (ul,cg) lies on the straight line p=const., and

the distance is S(1,2)=/§|log(o,/02)| which is identical to

that in 4.1(5°). oOn the other hand, when 015055 the present i
distance does not agree with the distance in 4.1(60), since ik}f

A
o=const. is not a geodesic curve of the present metric (see RO

also [1,3,7]).

4,3, Multivariate Distributions. .

We first describe some discrete cases. To do so we
employ the following multinomial notation: For 6=

(61,...,6n)eﬂp and a=(a1,...,an)622, we let

o4 [+}
lof=lo,l+--+le_| , e“:ell.--en“ , al=a leeat,

and hence |a|=o. ++--+a_, and |6]|=6.+++-+6_ if 6 is also in o
1 n 1 n




R:. If y=(y1,...,yn) is another vector in K", then

<8 ,y>=61y1+. . .+9nyn .

The vector (1,...,1) of R" is denoted by 1.
At the present, the sample space Y is a subset of 2:
with a counting measure and the parameter space is of the

form

— n. D
Op—{eeR+.|9|<p} (0<p<).

A typical example is as follows: Let F be analytic with the
power expansion

co
(4.2) F(£)= [ b e"  (-p<t<p),

m=0
such that bm>0 for every meZ+. Consider the probability
distribution

44

(4.3) p(a|6)= o] !

3] n
ot 2lal (o (cZ4 5 0€0)).

The metric tensor is then

gij(6)=f(|6|)[6;16 (o] (ec0)

ij
where

£(t)=(1logF) '(t) , h(t)=(logf)'(t).

The first information curvature tensor in Op is given by

1]

2yl ‘l“""'l.j Carat e

[}
Py
2 e
.

5 1‘1.-:.1.':.0‘:' I S

3 LN
D -
v e b e el
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R )

_ -1
1 kg (8)=-(40;0.) £(|e]){n(]e|) (s

ik6j2-6i£6jk

+h'(|6|)6i(5jg-63k)+h'(|6|)ej(6 5.0},

ik "if
while the information curvature is

1

k(8:x,y)=- —=——{£(|e])£' (]o])
4[£(le1]
#Cfo ) n(|o]1+ gt
where
H(E)=£(t) £"(£)-2[£" (£) 1%
and

A(X,y,2)=<X,X><y,2>=<X,y><X, 2> (x,y,2eR™).

This curvature is constant if and only if it is isotoropic,

i.e. if and only if H(t)=0 for -p<t<p. The latter is equi-
valent to either F(t)=aert or F(t)=a(b-t) * where a, b and

r are positive constants with p<b<». This gives, effective-
ly, either the independent Poisson distribution with k=0 or
the negative multinomial distribution with KE—(Ar)-l (see 1°
and 2° below).

To find the geodesic curves for the distribution in

(4.3), we introduce the additional functions,

L(t)=- 1 )[f"(é)—Zf'(t)h(t)]

f(t)+tf' (t

and

. A L) L
.
» ,‘ . ., '-"
x AR ‘e P
* * - . . -
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M(t)= 1 38" (£)+L£ (L) E () +E (£ (£)) 2.

f(e)+ef' (e

The equations for the geodesic curves 6=6(s) are then

6 6
k 1,k,2 . lI 72
e_k"'i(?);) +h(|e|)|e] -3 (lerje] 17=0 (k=1,...,n),

2f(le|)|e|"+u(|e|)[|e|']2=1

s (2
@)

1

n .2
£(le]) +£r(jed[]e] 1°=1.
k=

We now list some specific examples.

1° Independent Poisson Distributions.

plal6)= El!—e"ele“ (acZ, , 0€0,).

This is a special case of (4.2) with F(t)=et. The metric ifi
tensor is ?¥E
gij=e;laij

and the curvature is k20. The space O  with respect to this h??
metric is, therefore, essentially euclidean. The Rao dis- Et{i
tance for this distribution is ?';
sa0)=2( | (a-/by )22 (a,be0), £

effectively the "Hellinger distance" [7,8,12,23]. This

example, together with 4,1(7°), provides also an illust-

ration to property 1° of section 2. O



2° Negative Multinomial Distributions.

p(c|9)=-Eéé%%¥§)6a(l-|6|)r (acZ; , 0c0,)

with index r>0. This is a special case of (4.2). with F(t)=

(1-t)"F. The metric tensor is

_ . r -1 1
By el Cu Cagt e (00

and
R,. = r (6..6. ~6. 6. +——[0.(5. =5..)
ijke 2 ik°je i gk I-[6] i3k
4(1-|8]) 88,
+ej(61k'512)]}
with
K=— —]-'-
=- 7

It follows that Ol with the above metric is locally iso-

metric to the "Poincare hyperbloic space”. In particular,

for any two points a,bed, there exists a unique geodesic

1
curve in Ol, with respect to the metric, connecting the
points (see, for example, Hicks [18]).
The geodesic curves 0=0(s) are given by the "hyperbolas"
9, ={ tanh-l-(s+B )+B }2 (k=1 n)
Ay tanh a1’ By e
2/

where Aj’ Bj(3=l,...,n) and Bn+l are constants satisfying

g AB -0 § 2.2

k=1 k=1

(Ak+Bk)=l

.
g

-]

1
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—
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0<|Akcanh—-‘lﬂ+3 <1 (k=1,...,n).

2/t

This family includes the lines 0k=Bi(k=l,...,n) as limiting

=" a

cases. The Rao distance is n w
- Y 3

1 kzl 3Py

S(a,b)=2/T cosh | I (a,bed;). b
Y(a-la]) (1-]b]) g

An alternative expression may be obtained by using the - 4
"o

identity cosh-lx=log[x+¢x2~1], x>1. The expressions agree s
with those in 4.1(8°%) when n=1 (see also Oller and Cuadras Q}j
[22]). =

3° Multinomial Distributionms.

N-|a]

(aezi , |e]<N ; 6801)

p(a]|0)= -——-—%—Tyr a'(l—lel)

with an integer N>1 and sample space x={an:§ |af<N}. The

metric tensor is

—nea-Ll 1
gij-N(ei 835t 1?|W|') (6€0,),

and
R N —{5,. 6, 5 ..+ 1 [6.(6. -6..)+6.(5.,.~5. )]}
1sz Aee ik°je iRk 1-[6] i jr gk’ i ik i

with

1
4N’

This gives, effectively, the spherical geometry. In fact,
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upon putting 9n+l=1-|6| and introducing the new variables

i=B;/2 (i=1,...,n+l), we find that the metric becomes
+1 ]
2 " 2
ds”(y)=4N ] (dy,)
i=1 .:_.;- 3
and 01 is mapped onto the positive portion of the (n+l)- —=
) ) e n+l 2 2 ]
dimensional unit sphere Y—{y—(yl,...,yn+1)eR+ 3y Y 41 -
=1}. It follows from the spherical representation that the -
geodesic curves 6=6(s) are the "great circles" -
’ 3
8 . s |2 AT
ek(s)=(Akcos——— +Bks1n———) (k=1,...,ntl) DR
2/N 2/N ks
with e
=
=]- se e -:‘:—:"3
01~ 1- (8o 40)) T
and with constants (Al""’Ah+l)’ (Bl"'°’Bn+l) satisfying s
nfl 9 nfl 9 nfl :J}f
=) B =1, B, =0.
N A e T
Ly
The Rao distance is ‘5’2
_ Bl fiﬁf
S(a,b)=2/N cos™"( | Ya b )  (a,be0,) R
k k 1 -
k=1 -
with ' o

ar1+l=1-'laI ! bn+1=l_|bl’

effectively the "Hellinger-Bhattacharyya distance" {5,6]

(see also [3,24]). This agrees with 4.1(9°) when n=1.

The nondiscrete cases that we shall describe here are AR

.
z

R
3
-

- 4

.

._j
1

-3




those associated with the normal distribution

1 1
(2n)“/2 IZ|1/2 P

N(x:p,I)= {- %(x—u)’ Z-l(x-u)} (xeR™),

with mean (column) vector p and & variance-covariance matrix
L. We shall use the standard matrix notation: M(n,R) is the
space of all nxn real matrices, S(n,R)={AcM(n,R): A=A} the
subspace of symmetric matrices, GL(n,R) the group of all non-
singular matrices in ¥(n,R), P(n,R) the subset of all posi-
tive-definite symmetric matrices in GL(n,R). The inner pro- SO

duct and norm on M(n,R) are given by .y

<A,B>=tr(AB') . ||A||={<A,A>}l/2 (A,ReM(n,R)), -

and ;
-

[A,B]=AB-BA (A,BeM{n,R)) --?

stands for the commutator of A and B. fﬁﬁ
For the normal distribution p(-|8)=N(-|u,Z), © is -

RnXP(n,R) and 6=(u,L)e0. The information metric is then

-
* .
.

4.4) ds’=(aw) £ aw+ JeecThan?) (@,Ded.

We note that

-1/2 -1/2||2

(4.5) cr{(z‘ldz)2}=||z drz (ZeP(n,R)).

The geodesic curves are determined by
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4 E—1ﬁ=c (ceRp),

;

! -l. . V4
. (4.6) ¢ (T 7I) +ece’z=0,
S: { c’2c+-%tr{(2-lé)2}=l,
ﬁz where ¢ is a constant vector in Rp. We also note that for
g any (a,A) in RnXGL(n,R), the mapping (u,Z)~(A’pta, A IA)
;: establishes a homeomorphism of @ onto © which is also an

. . \ 2
isometry with respect to the information metric ds™. Con-

sequently, the Rao distance between (ul,Xl) and (uz,zz) in 0

satisfies
. —a(a ’ N/ ’
S(ul,El.uz,Xz) s(a u1+a,A ElA.A uyta, A ZZA)
for any (a,A)eR™xGL(n,R). In particular, the above Rao dis-
tance S(1,2) admits the form
- .o—1/2 -1/2, .~1/2 s
$(1,2)=8(0,T:2,™" "(uy-uy), I,7 7L,L, 700D, o
; Explicit expressions for the geodesic curves and the Rao ;f’%
@
o distance in this general setting are not available. We =
ES therefore only describe some special cases. ;;ui
2e R
E;f 47 Fixed-Variance-Covariance Normal Distributions. :fi:
t-—':‘ e
X In this case we consider the family of normal distribu- e
¥ tions N(‘lu,Zo) with a fixed variance-covariance matrix I . NN
- A
I In this case O is ®" and the information metric is RS
2 ’ - n ey
ds™=(dn) Zol(du) (ueR7), -
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S

which is essentially the euclidean metric on &", since . iﬁ;;
ZOEP(n,R) is constant. The Rao distance is therefore ;;*j
-4

S(ul,u2)={(ul—u2)'Z;l(ul-uz)}llz (ul,uzeﬁp). : }é

This is the familiar "Mahalanobis distance” [18] and it -M:
agrees with the distance in 4.1(6°) when n=1. Note, how- 3;55
ever, that, as is mentioned also in 4,2, the present dis- fsz
tance cannot be regarded as the restriction of the Rao T.;

distance for the entire manifold R"xP(n,R) to RPX{ZO}. This S

arteetat ety

is because the curve (u,Zo), as (4.6) shows, is not a geo-

desic curve of the metric in (4.4).

5? Fixed-Mcan Vector Normal Distributions.

Here we consider the family of normal distributions
N(°|uo,2) with a fixed mean vector M- In this case 0 is

P(n,R) and the information metric is

4.7) ds?= %—tr{(z"ldz)z} (2eP(n,R)).

Moreover, the geodesic curves £=Z(s) of this metric may be
determined from (4.6) with c=0. This gives (E-lé)'=0 and
the normalization tr{(2_15)2}=2. The solution I(s) must be-

long to P(n,R). Consequently the most general geodesic

curve is of the form

(4.8) £(s)=a"e58A

where A and B are constant matrices such that
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2 2 N

(4.9) AeGL(n,R) , BeS(n,R) , ||B|| =tr(8“)=2. A

P

The group of automorphisms G of P(n,R) onto itself is. i
generated by 2=zl and £+A’ ZA where AeGL(n,R). This group N

]
P RY O yaLpn

is "transitive'", i.e. for any Zl,zzsP(n,R) there exists an

~1/2.1/2
)

€eP(n,R), the automorphism feG given

[ERRNE

feG such that f(21)=£2 (just choose A= eGL(n,R)).

Moreover, for a given I

by f(z)=zlz'lz

1
2eP(n,R), satisfies f=f-l and f(Zl)=Zl.

1’
Consequently, the parameter space 0=P(n,R) is a "symmetric A
space". It is also easily verified that the group G coin- AR

. . - . 2
cides with the group of isometries of the metric ds™ on

P(n,R). The group G forms a subgroup of the "Siegel VR
sympletic group" [30] which acts on the "Siegel upper-half 'gi3§
space" S(n,R)+iP(n,R). This gives an alternative descrip- i;éﬁ
tion for the geodesic curves which is equivalent to that of 2;;?
(4.8)-(4.9), namely that the most general geodesic curve S

z=%(s) is of the fomm

vis v s
f(z(s))=diagle = ,...,e ] (£e6)

where f is an arbitrary automorphism of P(n,R) and»l,...,ﬁn

. . 2 2 -
are arbitrary non-negative numbers with vl+-~~+vn=2. -

'

The Rao distance S(1,2) between L, and I, of P(n,R) is -

.
oy
.

1
iAnL‘

2.ra.t.

easily determined from the above geodesic equations. The o

geodesic curve I=I(s) along these two points, with 2(0)=Zl,

Z(so)=22 and SOES(l,Z), satisfies (4.8)-(4.9) in the inter-

et 2. 12l2alala

. . ettt
. e .
.y . .
P rL,t, o
LV ’ ' ’
e [ER I B

Y RCNEES N et
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L.

o

val Ois_gso with .-S
I es°B=(A'l)’ At M;

Consequently, 1

(4.10) s(1,2)= 7_—| llogz /2, 1/zll (£1,2,eP(n,R)).

We note that o

n R
-1/2 2 1/2z 5 1/2} Z 2 ’, ,:

i -1/2
: (4.11) ||10gz7 ™ 72,27 DR

9%y || =tr{log

log™a, ,
k=1 k

where

LU

T S vTTY
"' « 2 a x ¥ =%
W ’._,..,4- PR
Ji . NN
¥
¢
£
)Y

L ,o-l/2. =172 ~ s
(4.12) AN (k=l,. . 0n) i

E:. ::: are the positive eigenvalues of the positive-definite matrix ~
~1 211/222211/2 (note also the symmetry between Zl and 22 in \::j
iw (4.11)). Equivalently, A{s+++5A  are the singular-values of :mf:
:'._‘. _: 22211, or of 21122, and they are determined uniquely as the X

solutions }\=}\k(k=l,. ..,n) of the determinantal equation

~ . |l22—21|=0. -:

i e
;: Other alternative expressions for the Rao distance S(1,2) )
E_: in (4.10) are also available. For this purpose we introduce .:__j
:::t:; the symmetric matrix --'.:
iii p=(2,-5,) (242, f:i
s and define R=R(Zl,22) by -;:::'

-----------------
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L
-
R=T2,, (=T7,T.,=T. T%,) <
12 *7r127127 7127127 .
S
Then R is symmetric and semi positive-definite; it is posi- LR
tive-definite if Zl+22 and is zero otherwise. Consequently, i
the eigenvalues rk=rk(R) of R are related to the eigenvalues i
A in (4.12) by -~ -9
1-2
=(— K2 =
rk—(1+Ak) ’ O_<_rk<l (k—l, L) ,n) .
In particular, the matrices +r1/? and T-RY? are members of .-
P(n,R). Moreover, since jltif
1/2 o k
log? BT —4feanh e 21 2ear( T 5% (0<r<l)
1/2 2k+1 —
1-r k=0
and
. n .
tr(RJ)= z rﬂ (3=0,1,...),
k=1
we have, noting that I+Rl/2 and I—R1/2 commute, ;@
1/2 @k RO
log2 I+Rl/2 =,4[tanh-1R1/2]2=4R( ) _2_11;_1)2,
I-R k=0 .
and therefore =
1/2 Tl
1/2 n 1+r ST
(4.13) 82(1,2)= -%'-tr{log2 EiBI7E}=-% Z logz--——EI77 . ﬂ}j}i
I-R k=1 1-r ST
k -3
The components of the first curvature tensor at any E

LeP(n,R) are zero and thus the space P(n,R) is essentially
euclidean, The Rao distance in (4.10) or in (4.13) reduces

to that in 4.1(50) when n=1 (see also [3]).

6°. Independent Normal Di-tributions.

We consider a family of normal distributions
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N(-Iu,Z:ZO) with varying mean vectors peR™ and variance-

5

covariance matrices ZeP(n,R) that commute with a fixed vari- B
ance-covariance matrix anP(n,R), ZO#I. The parameter v
V -

space O in this case is RHXP(n,R:ZC), where -3
—

LA

P(n,R:Eo)={ZeP(n,R):EZO=ZOZ}. :’f?

The last set contains the matrices I and Zo, and it contains . j{ﬁ

all the powers " meil,2,..., provided Xei(n,R:Zo). In
addition, if I, and I, are any members of ?(n,R:ZA) then so

is 218221.

The fixed matrix Zo admits the decomposition
2

£ =U’A°U
0 000

where U0 is an orthogonal matrix,

U‘U =U u’/=I, -
00 o0 ..

¥

.
“« e
o]
‘s
§or e
JUNAT - 3

with positive elements in the diagonal, and Ao is a diagonal

] 3
. - !‘

matrix e

. U

Ao=d1ag[001 yeee ,Oon] (ook>0 ; k=1,...,n), %

- s
< with positive elements. It follows from the well-known re- o
'%Q- sult on the simultaneous diagonalization of commuting sym- j:i
o K
St metric matrices (see, for example, [27, p. 41]) that '"ﬁ
-, A

?(n,R:EO)EP(n,R:UO) where

»
2atatatalaca

r e e N N s
‘
P
[] e L]
'

2
P(n,R:Uo)={ZeP(n,R):Z=U0A Uo}

I R PO PN ) L]
]

DRI AL
» e

.

[}

N
v e

.

3

. e
PR
P
g
P
Ty
oL

Y
e

. w7 e
o




with

A=diag[ol,...,on] (°k>0 , k=1,...,n.

This shows that P(n,R:Ai)EP(n,R:I) is the set of all diago-
nal matrices in P(n,R) and that it is isomorphic to
?(n,R:EO). In particular, ?(n,R:Zo) is an n-dimensional
submanifold of the full n(n+l)/2-dimensional manifold

P(n,R).

The mapping xk»on constitutes an isometry of the sample
space x=Rp onto itself and preserves the Lebesgue measure
on R". Therefore, the given family of distributions

N('lu,Z:ZO) is identical with

2 - 2 2
(4.14) NC- |u, A% 2 ) =N( Ivl,ol) N( Ivn,on)
where i
e
/ g
(4.15) v=(Vg5eee,v ) =U_u, :
A=d1ag[ol,...,cn] \ok>0:k=l,...,n).

The given distributions are therefore products of n indepen-
dent univariate normal distributions, and hence, by virtue
of property 1° of section 2, the analysis can be reduced to

that fouud in 4.2. The parameter space 0 is now (RXR+)n and

;t; e=[(vl,oi),...,(vn,ci)J’e(me+)n, and the information metric ;q
p - . : '1
o 18 o
L n dv B
% as”=2 ) o 21— o). >
~ k=1 V2 et
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Letting v;ka//i and introducing the complex variables
*
zk=vk+iok (k=1,...,n) we find that O becomes the poly-upper-

half plane Un={z=(zl,...,zn)stn:imz >0, k=1,...,n} and

k

ds?=2 E o 2dz dz (zel™)
ok K%k P

effectively the "Poincard metric" of u".

The above metric is "hermitian" (see [19]), i.e. it is of

the form
dsz= -dz, dz
where the summation convention has been used. Here [ng]
is an nxn hermitian (i.e. g ~=g.c ; k,j=1,...,n) matrix,
kj ik
defined on a complex manifold M of a complex dimension n.

For a local coordinate system ZiseeesZy of M with zk=xk+iyk

(k=1,...,n), we introduce the complex-derivatives
3, =(3_ -i3_ )/2 , 3, =(3_ +3_ )/2 (k=1,...,n
O yk/’k(xk yk)/ yeeesn)

and the components of the "Riceci curvature" tensor

Ry 3=-20,3 108G,

where G is the determinant of [gkjl' The components of the

Riemann curvature tensor are now given by

PO S - N
Rigki k%8158 kBim®¢8.3

while the mean Gaussian curvature is replaced by the "holo-

. !\‘.
be oo,

ot
L

."|
. .
PPN IR
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morphic sectional curvature"

2R ViV s

- 2
[3i§"i"j ]

k(z:v)= (zeM),

at zeM in the direction of v=(v1,...,vn)emn. Here [grm] is
the matrix-inverse of [grﬁ]'

For the metric under consideration we have

o =2 _1
83720 Si5 » 8 = %Sy
and
— n LN N J -2
G=2"[o;**°0 1",
Therefore :%:{:
N R
77 285 % Sky- g
Moreover, .:'3?
_ ~4
RiTki™% Sijke
where Sijkz is the tensor whose components are of value 1 if

i=j=k=2 and O otherwise. It follows that the information
/
holomorphic sectional curvature at zE[(vl,oi),...,(vn oi)]
b

in the direction of v=(vl,...,vn)eEn is

n
by (b
Zlok v, |

[T

k(z:v)=-

______
-------




........

This curvature is independent of the mean vector v=U°u, and

it varios between -1/2 and -1/2n, a result consistent with
4.2,

The geodesic curves are the product of the "semi-circles"
vk=/§(ak+rkcos¢k) . ok=rk51n¢k

where

I

k>0 , 0<¢k<n (k=1,...,n)

and ay5...5a are real conétants. This family includes
products containing the half-lines vk=cost. as limiting
cases. The Rao distance S(1,2) between (glﬂgi)
_ 2 2 2
"[(Vll)oll) 9. "(vln’oln)] and (22 9(_’_2)

2 2 v . .o
=[(v21,o21 ),...,(vzn,ozn)] , with the identification of

of (4.14)-(4.15), is given by

n, 48 (1,2)1/2

]
$(1,2)=Y2 ) log” ——75vi
k=1 1-61((1 ’2) -
where
- 2 2172
vy, =v,,. ) +2(0,, -0, ) :
5, (1,2)=|— 2 Ik 2 (k=1,...,0).
— |
L0 Vi) 200 40,50 |

This distance reduces to that in 4.2 when n=1 (see also [7]

for additional details).

. . e N - R
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5. Hilbert Space Embedding. .E:%j
The intrinsic geometry of a space of distributions may be :::::::::7
represented by means of an embedding in a Hilbert space. In ' R
order to describe this abstract approach we shall introduce some :::'_:j:f:'-.:
further notation. e
For ¢ € R we let o
1* = {p e M: I [pl® au < =} (o # 0), ~
0 2 Lo
L” = {peM: | (loglp)” an < =}, v
X s
and for 0 < r < » we also consider the subsets T
%) = {p e % I [p]® au = £} (@ # 0), ‘,‘-'t"-‘:"-?
X AR
Lo(r) ={pe 1-0: f (log lp|)2 du = r}. .'_:::::t::
X A

In this notation, 1% is a Hilbert space with the inner

product and norm

(p,q) = J padr, |lpll = Y&om) (paa e L)),

X
and Lz(r) is the sphere of radius r in LZ. We also define

a _ o L
= 1*OM, @) = FoN M

and we write P for Pa(l). Thus, in the notation of Section 1, :: .‘
1 1
For c e R and p € M+ we define

(5.1) T (p) = To%T o2 (a4 0), T)(p) = log p (p € M).
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Then T, is a bijection of M , onto M+ for any a # 0 while T, is

a bijection of M |, onto M. Moreover, T, embeds L:'_ into 12 with -

- -4
- _ 2 \ _p2, 2 .
i 5.2y T Y=L, T @) =" (=) @40 .
:‘:_:; and -:.'
[~ " 9
0, _ ,2 0, _p2 - -4

o .3 1 =12, 1,0% = . q.
_:ﬁ - The induced distance on Li is s
_ 2 a/2 a/2 :;j;ﬁ.':

(5-4) Qa(Pl,PZ) = lal “Pl - P2 II (plspze L+’ u#o) o

and -_‘;

0 e

(5.5) po(PysP,) = |llog p; ~ Log p,|| (py.p, € L)) 3

Here, the distance pl(pl’pZ) = 2| I/;q - /p_z-ll is known as the _4

A

"Hellinger distance" on L+ = L_]*'_. We also note that under some -

regularity conditions on P1sPy € L_?- we have }::::.‘:

po(pysP,) = limp_(p;,p,)- EX

0.’*0 - e

Let 6 = (61,92,...)’ be a set of real continuous parameters _:.::.:_

belonging to a parametcr space O, a manifold embedded in some 'i::f

© - ':;1

]Rn,l<n<oo. Here IR =2,2={(a YT 1 2 a2<°°,

- - 1’72 K=l k -1

a, R, k=1,2,...}. Let Fg = {p(.|8) ¢ Li: 90O}, a e R, be .1:::::

a parametric family of positive distributions p = p(.le),e € 0, -'.q-::‘

having stitable regularity properties. For example, we assume ' "3

that o

: i

3,p = ap(.[6)/26 (p = p(.]8) & FQ) Sha%

i : i : ) o

is in M for every 6 ¢ 0 and each i=1,2,..... We also consider -

A

the subfamily Pg = Fg N P* of Fg.

------------------------------------

AN
NIRRT, V5 SRR AP VP SIS ¥ TP e SV U0 P, U 1o Wel el TR B Sl Sl Yl Rl § 8 Sy VI Ve W Ul S X
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on Fg we have
2 2
pa(@(-18), pC.0 + 86)) = ds_(8),
- to the second order infinitesimal displacements. Here dsﬁ is
the a-order information metric
:_'_ 2 <
h ds (8) =I P (dlogp)2 dy (@ e R), .
- x :
E_‘_ where the dependence on x € X and 6 € 6 in the integral has _,:j
been supressed. This may also be written as e
- 2 s -
. ds”"(8) = d6”1 (8)de
- a a 4
:f-:- where ;
- - _ o (@) R
I.6) [gij )]
is the a-order information matrix with .
e g
() _ a s
gij ) P (3 ilogp) (3 j logp) dy. e
X SR
This matrix is always semi positive-definite. It is positive- -':::::3
. ..‘:"'.; :a
definite at 8 ¢ 0 if and only if the functions {Sip} are -
linearly independent over X. Note that dsz(e) = dsi(e) and e
.:. I1(8) = Il(e) are the ordinary information metric and informa- S
=
@ 3
- tion matrix, respectively. .
:::ﬁ: The geometries of L_O:_ and P* (¢ ¢ R) under the g-order o
.-_'.".- metric dsé may be read off from the embedding Ta of L_c:_ into L -
ﬁ' (5.6) Q=T (p) (e %)
b ¢ a +7° -
We then have ::‘_.::‘_‘:1
2 2 2 2 S
(5.7) ds (p) = ds,(q) = lldq]l® (q e L9). T
Here the parameter space O may be taken as a subset of LZ. ...j
The coordinates of a point q in 12 may be determined by any e
T
o ‘:.-\:. .:. T-‘.:.:_:\-..\-‘. .":-:"-~:'::':\N':-:'.‘:‘.".-“-."':.'-':'-‘:#":)::‘ ..... ~.:: ............... \ :- ;:' -:'_.:' .:-.. ........... . : .n._‘.._‘-:_‘ :.‘ "_' ........
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orthonormal basis (el,ez,...) of L2 via the Fourier-
coefficients
(5.8) sk = (q,ek) k = 1,2,...).
In this way the point q € L2 is identified with the point
(gl,q,z,...)/ of 22 and we h:ve
2 2

(5.9) lal= ) g (q e L9).

k=1 "k

When 0 is L2, the geometry under dsg is the usual eucli-

dean geometry. The Riemann-Christoffel tensor of the first <

E
e
.
2]
g

g

3

kind in identically zero and the geodesic curves q[s] =

q(-|s) ¢ 1% are the “"straight lines"

qsl] =as+b (qfs] e Lz, s € R) e
* where a and b are parameter-independent functions in L2, The e
-::::'_: geodesic distance is then -~
R 5,(a1,9,) = 0,(a754,) =lla; -a,ll (a;.a, ¢ L. o
2'71°72 2Y71°72 1 %2 1272 )
-.‘_-_:: When, on the other hand, 0 is Lz(r) (0 < r < »), the geometry
f_-::'_' under dsz is the spherical geometry. In this case, the N
- Riemann-Christoffel tensor of the first kind is given by R
ohe 3
::_ (5.10) R2(x,y: u,v) = @Q/H{(x,u)(y,v) - (x,v) (y,u)} T
;' . where x,y,u,v € L2. The mean Gaussian curvature is then NS
b T
:- Rz(x’y:x’y) / ( L2) .'l
e Ko (%,¥) = 5 5 72 1/4 (x,y¢ . ]
» =l Iy l°-T a3 3
- Y
ol To find the geodesic curves q=q[s] (0<s<1) of this -
S',: spherical geometry, we determine the solutions of the first ::',-_:'-;
..',-- _ 4
o variation equation "j
KA RORY
&% o
oS
o g
7
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L
s [ atsill es - o.

0
subject to the constraint

_ (5.12) llaisill = =« (0<s<L)
i: Here s is the arc-lengéh parameter and thus we also have the
3 normalization

(5.13) lfarslfl=1 (0<s<1).

For this purpose, we consider the Lagrangian

6(a,d) = [lalsil|+ a¢s) I lalsi]l - 221

RO ORI L

with the Lagrange multiplier A(s). Using an orthonormal basis

'l'l.'\
.
e

ﬁi (el,ez,...) of L2, the Lagrangian may be represented with the
-, aid of (5.8)-(5.9) as
’: © 1. ®
- (514 6a,) = (] )T (] ¢f -1,
k=1 k=1
Ei where (ql,gz,...)’ e 22 is the coordinatization of q ¢ Lz.

Thus we seek the extremum of

L
[ G(q’ﬁ) ds

T subject to the constraint (5.12) and the normalizatio: (5.13)
b -

?i‘ _  which, in view of (5.8)-(5.9), may be written as

= (5.15) ] ¢ =2 ] ¢2=1

o . Py .

- by K L %

::i This extremum is determined by the Euler-Lagrange equations
- 36 d 36

.'...' b = 0 (k=l’2,¢.o)’

b, 95 39,
where G = G(q,q)is given by (5.14), and the conditions in (5.15).

..............................................
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We obtain

(5.16) 2A(s) Sk ~ t%k =0 (k=1,2,...)

However, by the first equation of (5.15)
«©
z g, = 0,
Ly Tk

[;i and so
[--] ~ -]

v‘ (X .=

+ z =0 ’ :

) Loder Load ;
X or, by the second equation of (5.15), .
-‘.‘.“-: e - —l '.-‘
}_._:;,. kzl qu‘k :
- -, e 4
. It follows from (5.16) and (5.15) that 2>\(s)r2 = -1 and that .
o U T ) e
’: - 31( +‘r7’ 21( 0 (k-l,z,oo-)o "-' :

This shows that the geodesic curves q = q[s] of dsg on Lz(r) oy
are the "great circles” ?3?
(5.17) qis] = a cos §-+ b sin-% (0<s<1), ;%;
where a and b are parameter-independent orthogonal functions ;ii

in Lz(r), i.e. o

(5.18) all =lle]l] = =, (a,b) = 0. o

;:" In order to find the geodesic distance Sz(ql,qz), with re- T
b= - -
E: spect to dsz, between 9 and 4y of Lz(r), we use (5.17)-(5.18) D

LI
S L A

v

F . with q[0] = 4y q[L] = q, and L = SZ(ql’qZ)' This gives the .
i_' spherical distance .
-1, 1 2 -
3 (5.19) SZ(ql’qZ) = T cos {r—z (ql’qz)} (ql,q2 e L7()). .-::
Y '..:‘-.’
Ay The arc on the great circle in (5.17)-(5.18) connecting the two e
o points qq,q, € 1%(r) admits the alternative representation S
p-roy _
o (5.20) lqlsD?* = A cos’® -9 (0 <s<) -]
R i
) R
s . ~j
- -~

..................
------ W te e " - I L P I R S T - R T e e s FOR N 3
v.:-. AR '.':_'\.‘ .-V\.‘ - .-.\.. _..\_ '.\ ST o N T T T T ARARSS ::‘,\ oy SO AL R N R O N
s St S SARSUAE YO DI WAPTL I VAP WIS, U IO U WA, W YO0 o A R Y L S W VR A P T P Y T ST AR S S N L

IR i N




where

I Ly, 2L
(5.21) A= {ql + qzq- 2q,q, cos }/ sin )
) -1 2 L L
(5.22) B = tan {(q - cos r) / sin - }
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1
and L = Sz(ql,qz).

We now describe the geometries of Li and P® (¢ € R) under
the metric dgf. This is done, as mentioned previously, by
considering the geometries of L2 and Lz(r) under dsg and using
the embedding T  in (5.1) with (5.2)-(5.3) and (5.6)-(5.7).
Here r = r_ with r, = 2/|a| for o # 0 and r, = 1.

The previous analysis shows that the geometry of qi under
ds: is essentially euclidean. Thus the Riemann-Christoffel
tensor of the first kind is identically zero and the geodesic
curves in Lz have the following description: For a=0, we have

pls] = ba® (s ¢ R)
where a and b are parameter-independent functions in LS. For
« # 0, on the other hand, we have

pls] = (as + b)Z/a (0 < s<w)
where a and b are parameter-independent functions in Li. The
geodesic distance is then

5 (p1sP)) = p_(p1sp)) (PP, € LD,

where Py is the distance given in (5.4)-(5.5).

The geometry of P* under dsi, on the other hand, is in-
duced by the spherical representation of L2(ra). Thus the

Riemann-Christoffel tensor of the first kind is
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Em(x,y: u,v) = Rz(x,y: u,v) (x,y,u,v € Lz),
where Rz(x,y: u,v) is given by (5.10). It follows from (5.11)
that the mean Gaussian curvature of dsf in P* is
Ka(x,y) = 1/4 (x,y € Lz).

Note that the above quantities for a = 1 give the first in-
formation curvature tensor and the information curvature, re-
spectively.

The geodesic curves and distance on P* with respect to
ds: are determined via (5.17)-(5.22) with r = Tye For a = 0,
we have Ty = 1, and the geodesic curves p = p(s] ¢ PO are

given by
p(s) = exp{a cos s + b sin s} (0 < s < L)

where a and b are parameter-independent orthonormal functions

in Lz(l), i.e.
fall =1lbll = 1, (a,b) = 0.

Similarly, the geodesic distance on PO is then

_ -1

So(pl’pz) = cos (1°g pl’ lOg pz)
or

Sn( ) = cos T (log p,)(log p,)du (p,,p, € PO)

vo'P1°P) 1 2 1°P2 y

X
Moreover, corresponding to (5.20)-(5.22) we also have the al-
0

ternative representation for the geodesic curve p = p[s] ¢ P

connecting the points Py and Py of Po, namely

pls] = exp{A& cos (B-s)} (0<s<L)

where

. £
«
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> 2 2 2
L;::- A= {(log pl) +(log p2) - 2(log pl) (log p2) cos L} / sin"L,
- _ -1. . log po .
% B = tan {(log pl) - cos L)/sin L}
b
, and L = SO(pl’p2)°
For o« # 0, on the other hand, ra = 2/|a[ and the geodesic
ﬁ curves p = p[s] € P* are given by

: pls] = {a cos-l%]-s+bsin-l%l-s}2/a (0<s<L),

where a and b are parameter-independent orthonormal functions

:5 in Pz, i.e.
:::' la]l = Ip]l = 1, (a,b) =0 (a,b ¢ M+).
& It is also assumed that
lof lel
a cos “5- s + b sin 5 S € M+ (0<s<L).
In a similar fashion the geodesic distance on P is

_ 2 ~L ,0f/2 af2
Sa(pl,pz) —T(;l-cos (" 5Py )

or

/24 (pyop, € P

2 -1
Sa(pl,pz) = la] ©°8 I (Plpz)
X

Moreover, in correspondance with (5.20)-(5.22) the geodesic

curve p = p[s] ¢ > connecting the Py and Py of " admits the

alternative representation o
X pls] = AM® cos?/® (5 - J%J- s) (0<s<L) D
:- where lal G 3
O PR a/2 a . 2 Ja] B
& A—{pl+p2 2(plp2) cos ~ L} / sin 5 L, -

B= tan-l{[(-p—z)a/z - cos J-%-L L] / sin Jof L}
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When a = 1, we find that the Rao distance on P = Pl is

- - -1 %
X
which is effictively the Hellinger-Bhattacharyya distance,

described in 4.3(3°). This distance was obtained previously

in Rao [24] by using rather concrete and explicit methods, and —ﬂ

5 1
[ later in Dawid [12] by using abstract methods. ]
g:::‘ :1

’ ._:.nr“I

»
.
<

«

Ty Ty
e
’

.
e e

i

sy
P

fetatT . 1
Gt g

. s
R P

«
'. l'
TV R XE. WY

1
{
i

LA A
R

LIRS T S - .
N WP I I St .
LY . At et . . -, et -
-“-“‘ _‘.).‘. AN M Tt .t v
-, -

P RO _'ju‘..) PRCTS Y .\.:J




A7 SERERG T
a )

1 a b 7

AT ]
LA

53

(1]

(2}

(3]

[4]

[5]

(6]

(7]

(8]

(9]

(10]

(11]

{12]

[13]

REFERENCES

Amari, S., Theory of information spaces-a geometrical
foundation of the analysis of communication systems,
RAAG Memoirs 4 (1968), 373-418.

Amari, S., Theory of information space: a differential-
geometrical foundation of statistics, RAAG Reports 106
(1980), 1-53.

Atkinson, C. and Mitchell, A.F.S., Rao's distance
measure, Sankhya 43 (1981), 345-365.

Barndorff-Nielsen, 0., Information and Exponential
Families in Statistical Theory, Wiley, New York, 1978,

Bhattacharyya, A., On a measure of divergence beiween
two statistical populations, Bull, Calcutta Math., Soc.
35 (1943), 99-109,

Burbea, J., J-divergences and related concepts,
Encycl. Statist. Sci. 4 (1983), 290-296 (ed. Kotz-
Johnson), J. Wiley, New York, 1983.

Burbea, J. and Rao, C.R., Entropy differential metric,
distance and divergence measures in probability spaces:
a unified approach, J. Multivariate Anal. 12 (1982),
575-596.

Burbea, J. and Rao, C.R., Differential metrics in pro-
bability spaces, Probability Math. Statist, 3 (1982),
115-132,

Cenéov, N.N,, Categories of mathematical statistics
(in Russian), Doklady Akad. Nauk, SSSR 164 (1965), 3.

Centov, N.N., Statistical Decision Rules and Optimal
Conclusions (in Russian), Nauka, Moskva, 1972,

Dawid, A.P., Discussion on Professor Efron's paper
(1975), Ann. Statist. 3 (1975), 1231-1234,

Dawid, A.P., Further comments on some comments on a
paper by Bradley Efron, Ann. Statist. 5 (1977), 1249,

Efron, B., Defining the curvature of a statistical pro-
blem (with applications to second order deficiency),
(with discussion), Ann. Statist, 3 (1975), 1189-1217,.

.
. 2

.- ..
. . ‘ ¢ - .
'V DR AE N
A e
« s
. .
S S

¥
LA
L]
Lttt

.
v o PR

SRR At

. .

. AP

e e e

AR A B RN .




[15]

[16]

[17]

[18]

[19]

(20}

{21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

Efron, B., The geometry cof exponential families, Ann.
Statist. 6 (1978), 362-376.

Eisenhart, L., Riemannian Geometry, Princeton Univ.
Press, Princeton, 1926 and 1960.

Eisenhart, L., An Introduction to Differential Geo-
metry, Princeton Univ. Fress, Princeton, 1940 and 1964,

Fisher, R.A., Theory of statistical estimation, Proc.
Camb. Phil. Soc. 22 (1925), 700-725.

Hicks, N.J., Notes on Differential Geometry, Van
Nostrand, Princeten, 1965.

Kobayashi, S. and Nomizu, K., Foundations of Differen-
tial Geometry, Vol. II, Wiley, New York, 1968.

Laugwitz, D., Differential and Riemannian Geometry,
Academic Press, New York, 1965,

Mahalanobis, P,C., On the generalized distance in
statistics, Proc. Nat. Inst. Sci. India 12 (1936), 49-
55.

Oller, J.M, and Cuadras, C.M,, Rao's distance for
negative multinomial distributions, Sankhya (in press).

Pitman, E.J.G., Some Basic Theory for Statistical
Inference, Halsted Press, New York, 1979,

Rao, C,R., Information and accuracy attainable in the
estimation of statistical parameters, Bull. Calcutta
Math. Soc. 37 (1945), 81-91,

Rao, C.R., On the distance between two populations,
Sankhya 9 (1949), 246-248,

Rao, C.R., Efficient estimates and optimun inference
procedures in large samples, (with discussion), J. Roy,
Statist. Soc. B. 24 (1962), 46-72,

Rao, C.R., Linear Statistical Inference and its Appli-
cations, Wiley, New York, 1973.

Reeds, J., Discussion on Professor Efron's paper (1975),
Ann., Statist. 5 (1977), 1234-1238,

)
W :

4

PN RO USRI SICR T U NON

W o St e
PRI YUY S S W WY T RX)

.
et
PR TR

1)
$ .
ennad 2l

.
. .
R

_ablatalalal s

[
o e

...::. l




55

LI R
e £
l "
ae_v_ b

Loais

Schouten, J.A., Ricci-Calculus, Springer-~Verlag,

Berlin, 1954,

[29]

Siegel, C.L., Symplectic Geometry, Academic Press,

New York, 1964,

{30]

LADNONLS L LR

dedos o & £t




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS ‘

1a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

28, SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY CF REPORT

" Approved for public release; distributicn .
unlimited.

2. DECLASSIFICATION/DOWNGRADING SCHEDULE

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR-TR- 85-00195

7a. NAME OF MONITORING ORGANIZATION

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

84-52 -

6. NAME OF PERFORMING ORGANIZATION b. Of 7 ICE SYMBOL
(if applicable)

University of Pittsburgh Air Force Office of Scientific Research

6c. ADDRESS (City. State and.ZIP Code)
Center for Multivariate Analysis
515 Thackeray Hall, Pittsburgh PA 15260

7b. ADDRESS (City, State and ZIP Code)
Directorate of Mathematical & Information
Sciences, Bolling AFB DC 20332-6448

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicebles
AFOSR N F49620-85-C-0008
. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
Bolling AFB DC 20332-6448 61102F 2304 A5

11. TITLE (Include Security Clossification}

INFORMATIVE GEOMETRY OF PROBABILITY SPACES
12. PERSONAL AUTHORI(S)
Jacob Burbea

13a. TYPE OF REPORT
Technical

16. SUPPLEMENTARY NOTATION

13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Y., Mo.. Day) 15. PAGE COUNT
DEC 84 55

COSATI CODES
GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify dy block number)

SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The paper is concerned with the geometrical properties that are induced by the local
information contents and structures of the parameter space of probability distributions.

0f particular interest in this investigation is the Rao distance which is the geodesic
distance induced by the differential metric associated with the Fisher information matrix
of the parameter space. Moreover, following Efron, Dawid and Amari, some affine connections
are introduced into the informative geometry of parameter space and thereby elucidating the
role of the curvature in statistical studies. In addition, closed form expressions of the
Rao distances for certain families of probability distributions are given and discussed.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

uncLASSIFIED/UNLIMITED & same as ret. O pTicusers O UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL
MAJ Brian W. Woodruff
DD FORM 1473, 83 APR

22b. TELEPHONE NUMBER
(Include Area Code)

(202) 767- 5027 NM

EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

22c. OFFICE SYMBOL

—

L

P
T
v
*

.
RS O

.
P

v
.

’
i

v
PP |

[

e
.
'
’

3
OV SO QI T

?
o

DR RA

SECURITY CLASSIFICATION OF THIS PAGE




